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Ultrasound scattering and the study of vortex correlations in disordered flows
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In an idealized way, some turbulent flows can be pictured by assemblies of many vortices characterized by
a set of particle distribution functions. Ultrasound provides a useful, nonintrusive, tool to study the spatial
structure of vorticity in flows. This is analogous to the use of elastic neutron scattering to determine liquid
structure. We express the dispersion relation, as well as the scattering cross section, of sound waves propa-
gating in a “liquid” of identical vortices as a function of vortex pair correlation functions. In two dimensions,
formal analogies with ionic liquids are pointed out.

PACS numbds): 47.32.Cc, 43.20:g

I. INTRODUCTION two-dimensional Hamiltonian simulatiof%9], showing that
point vortices of same circulation sign are not randomly
Neutron scattering has been an essential experimental toolixed, but have a tendency to organize in a nonuniform way
for the study of liquid structure for the past 30 yefts The  within the domain. In infinite domains, homogeneous two-
fact that, in a first Born approximation, the scattering crosslimensional turbulence appears to be well described by
section is directly proportional to the static structure factormany large coherent vortices that must be spatially corre-
has been a source both of data and inspiration for the elabdated. Quantitative experimental or numerical studies of
ration and verification of current theories of liquid structurethese correlations are few, although two-dimensional turbu-
[2]. lence has become in recent years the object of controlled
At first sight, a turbulent fluid bears no relation to the laboratory experiment20,21]
microscopic structure of a liquid. However, a turbulent fluid  Ultrasound scattering provides a powerful, nonintrusive
has vortices, and these objects couple to acoustic waves ool to study vortical structure in flows. The characterization
much the same way as neutrons, or electromagnetic wavesf the scattered pressure of an ultrasonic plane wave at suf-
couple to matter. The purpose of the present paper is to poitficiently large distances from a vorticity distribution has mo-
out a number of theoretical developments that make thisivated various theoretical studigg2—27. In a way similar
analogy more precise, particularly with respect to ionic lig-to elastic neutron or x-ray scattering in liquigls, the scat-
uids. tering cross section of sound waves can be related within the
It is well known experimentally3—-5] as well as numeri- first Born approximation to the modulus of the Fourier trans-
cally [6-10 that coherent vortical structures easily appear inform of the vorticity field. This result has been experimen-
turbulent flows. Three-dimensional turbulent flows of hightally checked for regular laboratory floWy&8,29, and there
Reynolds number exhibit many intense, long-lived and tubeis increasing interest in applying this method for the study of
like vorticity regions of fairly well defined thickness and turbulence[30-32. In a related development, time-reversal
length [10]. These filaments have a tendency to organizeacoustic mirrors have been used to probe vortical fIER@;.
parallel one to each other in clusters. Although they gener- In the present article, we analyze this scattering problem
ally represent a small part of the motion of the fluid, thefrom a distribution function point of view, picturing the vor-
filaments probably contain information on the statistics ofticity distribution as an assembly of many undeformable vor-
the whole background. In a quite different context, numericatices whose structure is characterizegriori by a given set
studies of two-dimensional decaying turbulence also reveadf particle distribution densities. We will consider not only
the emergence of coherent vortices with particlelike characthe scattering cross section problem, but also the dispersion
ter. These vortices dominate the long-time motion of therelation(or effective wave numbgof an acoustic wave trav-
fluid. Their size and number density are well described byeling through such a medium. We consider a plane wave that
scaling laws, and their dynamics are similar to the Hamil-propagates in an infinite statistically homogeneous flow com-
tonian motion of few point vorticef11-13. According to  posed of vortices with number density According to mul-
these observations, two-dimensional decaying turbulence caiple scattering theorysee, e.g., Ref§34-34), such a me-
be approximately described with a finite number of degreeslium can be described on average by an effective index of
of freedom. Following this approach, statistical mechanicatefraction, which generally depends on the wave frequency.
theories of the Euler's equation in a bounded domain havéloreover, the wave number that characterizes the mean
been developed for systems of point vorti¢éd—16, and  wave has an imaginary part, equal to half the total scattering
extended afterwards to continuous distributions of vorticitycross section per unit volume; this accounts for the attenua-
[17,18. These theories where able to explain the results ofion of the wave amplitude due to the loss of coherence dur-
ing the scattering processes. In order to get as much insight
as possible while keeping algebraic complications to a mini-
*Present address: Supercomputer Computations Research Ingtium we take all vortices with the same absolute value of
tute, Florida State University, Tallahassee, FL 32306-4130. circulation.

1063-651X/2000/6(@)/1491(6)/$15.00 PRE 61 1491 ©2000 The American Physical Society



1492 DENIS BOYER AND FERNANDO LUND PRE 61

In a recent publicatiof37] we derived a general disper- x (ko.9)260(q) 2.2
sion relation for a sound wave propagating in a disordered 0 ko M7 '
flow of mean velocity zero, and this result was applied to a h — ¢ /e is the ratio of ific heats at tant i
“gas” of statistically independent identical vortices. In the wherey=Cc,/C, IS Ine ratio of Specitic heats at constant pres
next section, we extend the expression of the dispersion r ure and constant.volurr.w, the volume occupied by the
lation for a population of identical vortices of arbitrary spa- 1oW: d the space dimension, and

tial correlations. In Sec. lll, we specify the study to two-

dimensional systems and underline some formal analogies g(O)(d’): lim 1 2.3
with ionic liquids. The results are discussed in Sec. IV, es- ko o 02— (Ko+i7)? '
pecially in connection with two-dimensional decaying turbu- K

lence. Technical details are given in the Appendix. is the Fourier transform of the free-space Green’s function.

The second term of the right-hand side of E2.2) is real
and proportional to the kinetic energy of the flow per unit

The treatment of the interaction between a sound wav&olume. The real part of the last term of the right-hand side
and a flow presented in R€i37] follows an usual scheme, is also of order of the kinetic energy per unit volume, but
already presented elsewhg@]. The analysis is based on a introduces dispersion. This last term has an imaginary part,
linearization of the Euler and continuity equations for a fluid,and using the residue theorem, one deduces thak)im(
and relies on several assumptions: the velocities associatedA ~! is given by
with the acoustic wave are supposed to be much smaller than
the typical velocities of the base flow, themselves much . o
lower than the speed of sound. In this case the acoustic wave A =
is a first order effect over the base flow, that can be consid-
ered as incompressible to zeroth order. The frequeoyf wkS” 1 do@
the incoming wave is also supposed much higher than the =— —f
frequencies associated with the flow, which is considered as Co v
frozen, and viscous effects can be neglected. The medium is
then stationary and averages are made over flow configura- N @A AT GO R A
tions. In the following, we denote, the speed of sound and XaE,b (Lo v (koq = ko) J[ko - v (ko= ko))
ko= vq/cq the wave number of the acoustic wave in the flow o
at rest. X(ko-a)?, 2.4

If the flow is composed oN undeformable vortices, its
velocity field is the sum of the flow fields generated by eachvhere oy is the total scattering cross section per unit vol-

II. “LIQUIDS” OF VORTICES

(2m)¢

vortex, ume, q=q/|q|, dQ@ is the solid angle measure, andis
N then the attenuation length of the coherent wpd@). It is
2oy — “(a) /o assumed that the attenuation per wavelength is sméa},
u(x)= V(X). 2.1 . . : .
(x) agl (x) @1 >1), a condition that is fulfilled for a wide range of wave-

o ) o lengths if the Mach number is smaflSee Ref[41] for a
The incident wave is scattered at the velocity inhomogeneyier discussion of the validity of Eq€2.2) and (2.4)].
ities of the medium and when averages over disorder con- t the yortices are all identical, the Fourier transform

figurations are performed, the mean acoustic pressure thaty
results from these scattering processes can be derived withjn
the framework of multiple scattering theofg4—36,38,39

The mean wave is the sum of coherent scattering paths and .
has the same direction of propagation than the incident wave, v@(q)= f dXV(X—X,,a)e 19, (2.5
noted ko, but is described by an effective wave numiker
#ko. For a weakly perturbed medium, i.e., for a flow of low

Mach numberM=|ul/c, (the vortex densityr can be high, g its global orientationy is a fixed velocity function that

kc_an be gxpanded perturbatively arougdn muItipIe scat- depends on the vortex shape. The terms in &) are
tering series. Since the flow has no mean velocity, the tem&vera ed over all the positions and orientati{)ﬁ é}
of order M is identically zero. The first nonvanishing cor- 9 P X5,

. . . 5 . In Ref.[37], we have supposed that the cross terms in the
;?g;'?gfal?gﬁévsaa’vgedﬁﬁ{taewSinolf:g::gl s,pzzg{lg%;]e disper sums of Egs(2.2) and(2.4) vanish. This situation is encoun-
tered either when the flow fields of the vortides and(b) do
, o ,(y=4) 1 dq not overlap (7(‘1)-\7_“’)20), ie., if the number density
k“=kg+ kg 2 Vj (2m)° =N/V is small, or if the density is high but the vortices are
0 T spatially uncorrelated(¢®.v(®)=0, or mean-field-like as-
4 sumption.
5—2 v If correlations between vortices are present, the off-
Co diagonal terms of the Born integrals of Eq2.2) and (2.4)
N do not vanish. It is thus convenient to introduce a pair cor-
XJ' dq > ([ko-v@(G—Ko) ko -V (Ko— )] relation function for the rigid vortices, notegl With a nor-
(2m)9 ap malized angle measure, this distribution function is such that

(ci) of the flow field generated by any vortéa) has the

wherex, is the position of the vortex analan angle describ-

X 2 (ko V(@) [ko v (= a)]) +k
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ﬂzg(ia,ib,é,ﬁ)diadibdadﬁ represents the number of pairs We consider a system composed _of axisymme;ric vortices,
per unit volume and per unit angle formed by two vortices inwhere each vortex produces an azimuthal velocity fiskek

s ; Vil il : Ref.[41] for an examplgaround a vortex core of circulation
li tively. -
;32&%;@“0”8 {xa,a} and {x, b}, respectively. Conse modulusl’. Suppose that each vortex has a probabiityto

have a circulation+I", and a probabilityk_ to have circula-
tion —T'(x,. +x_=1). The two-particle distributions are de-
scribed by introducing three pair correlation functiohns,, ,
L o h__, andh, _, where the sign of the subscript refers to the
= —zf dxadx,dadbg(x,,Xp,a,b)vi(X—X4,a) respective signs of the vortex circulations. At this point, it is
v convenient to introduce distribution functions used in the
formalism of ionic liquids[42]. Let us consider the local
vortex density, namely a “charge” density, defined as

<V|()Z_)Za ,é)VJ()Z_)-()b ,6)>

XVj()_()_)-()b,E)). (26)

For homogeneous systems with vanishing correlations at

large distancesg(X,,Xy,a,b)=g(X,—X;,a,b), and g—1 p%(r)=2, zipi(r), (3.1
when |x,—Xp|— . Using the fact thaff dx,v;(X—X,) =0, '

expression(2.6) remains unchanged g is replaced by the
total correlation functiom=g— 1, which has the advantage
of a well-defined Fourier transform. Using the identig/6),
the dispersion relatiof2.2) can be recast as

where the sum runs over the two species of number density

pi(F) and charge; (here, the orientatiort1). The vortex, or
charge, structure facto6,, associated with the density

p?(r), defined by

k2=k2+ ;dadblko-v(d,a)] (P*(@)p*(—a))

(y—4)k5 f dq
SeAd) = (3.2

ca (2m)

x[ko-v(—d,b)]{ns(a—b)+n’h(q,a,b)} _
can be rewritten as
Y [« H . i i i
i d2dblko-v@—ko.@)ltkoviko=a D) s,5(G) =1+ 0D N o (6)+X2 N (G)~2x,x-h, - (G)].
3.3
From Eq.(2.7), we can deduce the expression for the index
of refraction defined asV=c/cy=Re(k,/k), wherec de-
notes the new phase velocity. Noting that(x,—2)
= —\7()?,2), and assuming that the flow is isotropic, one gets

c

X (ko-a)?G(a){ns(a—b) +n*h(g—Ke,a,b)}, (2.7)

where v(g,a) is the Fourier transform of the flow
field of the vortex located at the originy(q,a)
=fdx J()Z,é)exp(—iﬁ-i). In the same way, we get from Eq.

o SN=1 n(7_4)fmd 2(A)Szz(a)
. 27Tk8+1 dQ(d) o ) o chg 0 qav(q z(q
oT=——> f gdadblko - v(kog—kog,a)] )
Co (2m) 2n dg . - - Lo
AR - 2 re| i (I~ Kol) S| Ko
X[ko - v(ko—kod,b)](Ko - ) Co (2m)
X {né(a—b)+n?h(keG—Ko,a,b)1. 2.9 X(ko-a)*G (). (3.4
results of Ref{37,41. asymptotic results obtained in R¢#1] for the index of re-
fraction in the limits of short and long wavelengths, remain
ll. TWO-DIMENSIONAL CASE valid here, provided that one replaces any quadratic factor

o , by V2S5
Two-dimensional turbulence has been the subject of many The tzotal scattering cross section, in turn, is given by

studies because of its possible applications in meteorology
and oceanography, but also because it is the most accessible nkg
dimension for computational and theoretical approaches. In Z_J' O ook 12 SR
the present context, the two-dimensional study of the effects T ché A0 ko- v(Jkod = ko)|*Szz(lkod = kol)

of vortex correlations on sound propagation is clearly sim- o

pler because of the reduced number of degrees of freedom X (ko-q)2. (3.5
involved. However, we hope that it can provide at least some

first answers qualitatively valid in any dimension, besides theJsing the propertyg-v(q)=0 for incompressible fluidga
fact that the structure of turbulence itself deeply changegorrect assumption for low Mach number base flpwas
with the space dimensionality. In two dimensions the vortic-jjlustrated by the geometrical construction of Fig. 1, the
ity @ points in the perpendicular direction, along thaxis.  above expression can be rewritten
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u(k,q) the dispersion relation, to identical ordering between identi-
cal and opposite vorticesh( . +h__=2h,_). We logi-
cally check that a tendency to observe vortex pairs of iden-
tical circulation . +h__>2h,_) would result in an
increase of the kinetic energy of the flow, and hence the

d phase change. The limit & ,(q) at small wave numbers is
K 9 related to that of the total scattering cross section through
relation(3.7) if the flow produced by one vortex is bounded
k/ K in space.S;,(0) indeed represents the local fluctuations of
+1K Y the number of charges, and is of particular interest. A local

- electroneutrality assumptiofS,,(0)=0] means that the
“charge” (or circulation of a given vortex is exactly can-
celed by the total “charge” of the vortices that surround it:
FIG. 1. Axisymmetric vortex in two dimensions. at length scales of the order of a few vortex radii, the fluid
has no net rotation.

Let us consider the flow at small scales, i.e., made of

. nky (7 sirfocosd

ox 5 51— cosd v2(kg\/2— 2 cosb) r)early pointlike vort.ices. AIth_ough not muc.h studied in the
2mCy) —m (1—cos) literature, vortex pair correlations have motivated theoretical
works. An exact analytical expression for the vorticity struc-
X Szz(Koy2—2 cos6). (36 ture factor has been derived for a class of two-dimensional

stationary solutions of the Navier-Stokes equafiéd]. It is
characterized by a Debye-kkel-like pair distribution,
S;2(q) < q?/ (g% + kg). Turbulence at high Reynolds number
clearly exhibits quite distinct statistical properties: computer
simulations rather show that vortices with same circulation
sign have the tendency to organize in domdib8]. Such
systems, where electroneutrality is not locally observed, are
theoretically better described by other approaches, like the
microcanonical formulations of the statistics of two-
dimensional vortices in a bounded domail¥—1§. These

IV. DISCUSSION theories predict that the one-point probability distribution of

Relations(3.4) and (3.5 show that the coherent propaga- vortices is spatlally nor_lunlform._ To obtain this result, how-
ever, two-point correlation functions are usually neglected at

tion of an acoustic wave through a population of |dent|calfirst order S,5=1).

V(_)rtices_ closely _depends on their spatial structure. In two Two-dimensional homogeneous isotropic turbulence can

dimensions, the index of refraction and the attenuation Iengtlt'l)e conveniently described in  the inertial range b

of the wave involve a circulatiofor “charge,” by reference . \ently ge Dby
uniform mixture of long range correlated vortices.

to ionic liquids structure factor. Hence, if the vortices have a_, . . .
simple shape and generate a flow fieldvith well known Notice that the two-dimensional energy spectrufiq)

characteristics, information on this distribution function can=a(u(@)-u(=q))/(4wV), can be reexpresésed with the
be deduced from the study of the acoustic properties merharge structure factor ag&(q)=n/(4m)q v(q)Szz(q).
tioned above. Tractable analytical expressions have onl he interpretation of the classical two-dimensional turbu-
been obtained in two dimensions. However, we think thafénce spectral lawsE(k)~k™* (u=3 [20,45,48, u=4
they provide a qualitative understanding of the probe of vor{11,47), in terms of quasi-point-like vorticelsv(q)~q '] .
tex correlations by ultrasound techniques, even in higheleads toS;z~q ™~ This is supposed to be the behavior
space dimensions. of S;7 in the inertial range. When the structure factor is steep
For its similarity with two-dimensional homogeneous tur- €nough(say, if u is significantly larger than)1 one expects
bulence[43], let us consider further the case of a neutralthe vorticity correlations to be long range and positive: the
flow, wherex, =x_=1/2. There are mainly two ways of spatial structure differs qualitatively from that of the ideal
considering the vortex structure of decaying two-9as given by a white spectrum. The common spectral laws
dimensional turbulence, since there are two very differenfife compatible with preferential ordering between same sign
length scales in the problem. Depending on the scale of invortices.
terest, one can either picture the flow as composed of many At large scales, the flow is made of large coherent vortical
small, nearly pointlike vortices that may form large struc-Structures. The pair correlations between these vortices are
tures, or consider the flow as formed by these few largelosely related to the properties of the energy spectrum in the
coherent vortices only. One can assume that the size of tHew wave number limit, outside of the inertial range. For
former vortices is of order of a dissipation scale, while theinstance, if the spectrum in this limit is such th&(q)
size of the latter is of order of the integral scale, at which~qf", with u’>0 [48], the electroneutrality is local beyond
energy is initially injected. the size of the coherent vortices. In that case, one expects
An ideal gas of vortices is characterized By,(q)=1; that the structure of the vortex system should be similar to
however, Eq(3.3) shows that it is equivalent, with respect to the short range structure in liquids.

With the same techniques presented in IR&1], it is easy to
show thato$~k(2) whenky,—». If S;,(q) behaves ag”? at
small g, one gets, from Eq3.6),

0'-’|5~k8+ﬁ, ko—0, (3.7

where we have used the propextyg—0)~q for an axi-
symmetric bounded flow.
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APPENDIX N e s s A
X e 14 Ca= Xk .y (x,a)e” 9%k, v(x',b)e'd X

!

For identical vortices and with the help of relati¢h5),
the diagonal termsa) = (b) of the sum (A3)

1. - . ~ - 2
v[kO'U(Q)][kO'U(—Q)] and can be recast as
1 PO I -
=y 2 (ko v@(@)][ko v (=a)]) (A1) .
ab nzf dadb[ky-v(qg,a)][ke-v(—q,b)]n(q,a,b). (A4)
give the contribution

Nn s s a s s Summing the termg$A2) and (A4), the relations(2.2) and
”f dalko-v(q,a)]lko-v(—a.a)], (A2) (2 4 are transformed to Eq$2.7) and (2.8).
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