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Ultrasound scattering and the study of vortex correlations in disordered flows

Denis Boyer* and Fernando Lund
Departamento de Fı´sica, Facultad de Ciencias Fı´sicas y Matema´ticas, Universidad de Chile, Casilla 487-3, Santiago, Chile

~Received 30 June 1999!

In an idealized way, some turbulent flows can be pictured by assemblies of many vortices characterized by
a set of particle distribution functions. Ultrasound provides a useful, nonintrusive, tool to study the spatial
structure of vorticity in flows. This is analogous to the use of elastic neutron scattering to determine liquid
structure. We express the dispersion relation, as well as the scattering cross section, of sound waves propa-
gating in a ‘‘liquid’’ of identical vortices as a function of vortex pair correlation functions. In two dimensions,
formal analogies with ionic liquids are pointed out.

PACS number~s!: 47.32.Cc, 43.20.1g
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I. INTRODUCTION

Neutron scattering has been an essential experimental
for the study of liquid structure for the past 30 years@1#. The
fact that, in a first Born approximation, the scattering cro
section is directly proportional to the static structure fac
has been a source both of data and inspiration for the el
ration and verification of current theories of liquid structu
@2#.

At first sight, a turbulent fluid bears no relation to th
microscopic structure of a liquid. However, a turbulent flu
has vortices, and these objects couple to acoustic wave
much the same way as neutrons, or electromagnetic wa
couple to matter. The purpose of the present paper is to p
out a number of theoretical developments that make
analogy more precise, particularly with respect to ionic l
uids.

It is well known experimentally@3–5# as well as numeri-
cally @6–10# that coherent vortical structures easily appea
turbulent flows. Three-dimensional turbulent flows of hi
Reynolds number exhibit many intense, long-lived and tu
like vorticity regions of fairly well defined thickness an
length @10#. These filaments have a tendency to organ
parallel one to each other in clusters. Although they gen
ally represent a small part of the motion of the fluid, t
filaments probably contain information on the statistics
the whole background. In a quite different context, numeri
studies of two-dimensional decaying turbulence also rev
the emergence of coherent vortices with particlelike char
ter. These vortices dominate the long-time motion of
fluid. Their size and number density are well described
scaling laws, and their dynamics are similar to the Ham
tonian motion of few point vortices@11–13#. According to
these observations, two-dimensional decaying turbulence
be approximately described with a finite number of degr
of freedom. Following this approach, statistical mechani
theories of the Euler’s equation in a bounded domain h
been developed for systems of point vortices@14–16#, and
extended afterwards to continuous distributions of vortic
@17,18#. These theories where able to explain the results
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two-dimensional Hamiltonian simulations@19#, showing that
point vortices of same circulation sign are not random
mixed, but have a tendency to organize in a nonuniform w
within the domain. In infinite domains, homogeneous tw
dimensional turbulence appears to be well described
many large coherent vortices that must be spatially co
lated. Quantitative experimental or numerical studies
these correlations are few, although two-dimensional tur
lence has become in recent years the object of contro
laboratory experiments@20,21#

Ultrasound scattering provides a powerful, nonintrus
tool to study vortical structure in flows. The characterizati
of the scattered pressure of an ultrasonic plane wave at
ficiently large distances from a vorticity distribution has m
tivated various theoretical studies@22–27#. In a way similar
to elastic neutron or x-ray scattering in liquids@1#, the scat-
tering cross section of sound waves can be related within
first Born approximation to the modulus of the Fourier tran
form of the vorticity field. This result has been experime
tally checked for regular laboratory flows@28,29#, and there
is increasing interest in applying this method for the study
turbulence@30–32#. In a related development, time-revers
acoustic mirrors have been used to probe vortical flows@33#.

In the present article, we analyze this scattering probl
from a distribution function point of view, picturing the vor
ticity distribution as an assembly of many undeformable v
tices whose structure is characterizeda priori by a given set
of particle distribution densities. We will consider not on
the scattering cross section problem, but also the disper
relation~or effective wave number! of an acoustic wave trav
eling through such a medium. We consider a plane wave
propagates in an infinite statistically homogeneous flow co
posed of vortices with number densityn. According to mul-
tiple scattering theory~see, e.g., Refs.@34–36#!, such a me-
dium can be described on average by an effective index
refraction, which generally depends on the wave frequen
Moreover, the wave number that characterizes the m
wave has an imaginary part, equal to half the total scatte
cross section per unit volume; this accounts for the atten
tion of the wave amplitude due to the loss of coherence d
ing the scattering processes. In order to get as much ins
as possible while keeping algebraic complications to a m
mum we take all vortices with the same absolute value
circulation.

sti-
1491 ©2000 The American Physical Society
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In a recent publication@37# we derived a general dispe
sion relation for a sound wave propagating in a disorde
flow of mean velocity zero, and this result was applied to
‘‘gas’’ of statistically independent identical vortices. In th
next section, we extend the expression of the dispersion
lation for a population of identical vortices of arbitrary sp
tial correlations. In Sec. III, we specify the study to tw
dimensional systems and underline some formal analo
with ionic liquids. The results are discussed in Sec. IV,
pecially in connection with two-dimensional decaying turb
lence. Technical details are given in the Appendix.

II. ‘‘LIQUIDS’’ OF VORTICES

The treatment of the interaction between a sound w
and a flow presented in Ref.@37# follows an usual scheme
already presented elsewhere@26#. The analysis is based on
linearization of the Euler and continuity equations for a flu
and relies on several assumptions: the velocities assoc
with the acoustic wave are supposed to be much smaller
the typical velocities of the base flow, themselves mu
lower than the speed of sound. In this case the acoustic w
is a first order effect over the base flow, that can be con
ered as incompressible to zeroth order. The frequencyn0 of
the incoming wave is also supposed much higher than
frequencies associated with the flow, which is considered
frozen, and viscous effects can be neglected. The mediu
then stationary and averages are made over flow config
tions. In the following, we denotec0 the speed of sound an
k05n0 /c0 the wave number of the acoustic wave in the flo
at rest.

If the flow is composed ofN undeformable vortices, its
velocity field is the sum of the flow fields generated by ea
vortex,

uW ~xW !5 (
a51

N

vW (a)~xW !. ~2.1!

The incident wave is scattered at the velocity inhomoge
ities of the medium and when averages over disorder c
figurations are performed, the mean acoustic pressure
results from these scattering processes can be derived w
the framework of multiple scattering theory@34–36,38,39#.
The mean wave is the sum of coherent scattering paths
has the same direction of propagation than the incident w
noted k̂0, but is described by an effective wave numberk
Þk0 . For a weakly perturbed medium, i.e., for a flow of lo
Mach numberM5uuW u/c0 ~the vortex densityn can be high!,
k can be expanded perturbatively aroundk0 in multiple scat-
tering series. Since the flow has no mean velocity, the t
of order M is identically zero. The first nonvanishing co
rections involve two diagrams of orderM 2, and the disper-
sion relations can be written in Fourier space as@37#

k25k0
21k0

2 ~g24!

c0
2

1

VE dqW

~2p!d

3(
a,b

^@ k̂0•vW (a)~qW !#@ k̂0•vW (b)~2qW !#&1k0
2 4

c0
2

1

V

3E dqW

~2p!d (
a,b

^@ k̂0•vW (a)~qW 2kW0!#@ k̂0•vW (b)~kW02qW !#&
d
a
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3~ k̂0 .qW !2Gk0

(0)~qW !, ~2.2!

whereg5cp /cv is the ratio of specific heats at constant pre
sure and constant volume,V the volume occupied by the
flow, d the space dimension, and

Gk0

(0)~qW !5 lim
h→01

1

q22~k01 ih!2
~2.3!

is the Fourier transform of the free-space Green’s functi
The second term of the right-hand side of Eq.~2.2! is real
and proportional to the kinetic energy of the flow per u
volume. The real part of the last term of the right-hand s
is also of order of the kinetic energy per unit volume, b
introduces dispersion. This last term has an imaginary p
and using the residue theorem, one deduces that Imk)
[L21 is given by

L215
sT*

2

5
pk0

d11

c0
2

1

VE dV (d)

~2p!d

3(
a,b

^@ k̂0•vW (a)~k0q̂2kW0!#@ k̂0•vW (b)~kW02k0q̂!#&

3~ k̂0•q̂!2, ~2.4!

wheresT* is the total scattering cross section per unit v

ume, q̂5qW /uqW u, dV (d) is the solid angle measure, andL is
then the attenuation length of the coherent wave@40#. It is
assumed that the attenuation per wavelength is small (Lk0
@1), a condition that is fulfilled for a wide range of wave
lengths if the Mach number is small.@See Ref.@41# for a
fuller discussion of the validity of Eqs.~2.2! and ~2.4!#.

If the vortices are all identical, the Fourier transfor

vW (a)(qW ) of the flow field generated by any vortex~a! has the
form

vW (a)~qW !5E dxW vW ~xW2xWa ,â!e2 iqW •xW, ~2.5!

wherexWa is the position of the vortex andâ an angle describ-
ing its global orientation;vW is a fixed velocity function that
depends on the vortex shape. The terms in Eq.~2.2! are
averaged over all the positions and orientations$xWa ,â%.

In Ref. @37#, we have supposed that the cross terms in
sums of Eqs.~2.2! and~2.4! vanish. This situation is encoun
tered either when the flow fields of the vortices~a! and~b! do
not overlap (vW (a)

•vW (b).0), i.e., if the number densityn
5N/V is small, or if the density is high but the vortices a
spatially uncorrelated (^vW (a)

•vW (b)&.0, or mean-field-like as-
sumption!.

If correlations between vortices are present, the o
diagonal terms of the Born integrals of Eqs.~2.2! and ~2.4!
do not vanish. It is thus convenient to introduce a pair c
relation function for the rigid vortices, notedg. With a nor-
malized angle measure, this distribution function is such t
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n2g(xWa ,xWb ,â,b̂)dxWadxWbdâdb̂ represents the number of pai
per unit volume and per unit angle formed by two vortices
configurations $xWa ,â% and $xWb ,b̂%, respectively. Conse
quently,

^v i~xW2xWa ,â!v j~xW2xWb ,b̂!&

5
1

V2E dxWadxWbdâdb̂g~xWa ,xWb ,â,b̂!v i~xW2xWa ,â!

3v j~xW2xWb ,b̂!. ~2.6!

For homogeneous systems with vanishing correlations
large distances,g(xWa ,xWb ,â,b̂)5g(xWa2xWb ,â,b̂), and g→1
when uxWa2xWbu→`. Using the fact that*dxWav i(xW2xWa)50,
expression~2.6! remains unchanged ifg is replaced by the
total correlation functionh[g21, which has the advantag
of a well-defined Fourier transform. Using the identity~2.6!,
the dispersion relation~2.2! can be recast as

k25k0
21

~g24!k0
2

c0
2 E dqW

~2p!d
dâdb̂@ k̂0•vW ~qW ,â!#

3@ k̂0•vW ~2qW ,b̂!#$nd~ â2b̂!1n2h~qW ,â,b̂!%

1
4k0

2

c0
2 E dqW

~2p!d
dâdb̂@ k̂0•vW ~qW 2kW0 ,â!#@ k̂0•vW ~kW02qW ,b̂!#

3~ k̂0•qW !2Gk0

(0)~qW !$nd~ â2b̂!1n2h~qW 2kW0 ,â,b̂!%, ~2.7!

where vW (qW ,â) is the Fourier transform of the flow
field of the vortex located at the origin,vW (qW ,â)
5*dxW vW (xW ,â)exp(2iqW•xW). In the same way, we get from Eq
~2.4!

sT* 5
2pk0

d11

c0
2 E dV (d)

~2p!d
dâdb̂@ k̂0•vW ~k0q̂2kW0 ,â!#

3@ k̂0•vW ~kW02k0q̂,b̂!#~ k̂0•q̂!2

3$nd~ â2b̂!1n2h~k0q̂2kW0 ,â,b̂!%. ~2.8!

When the vortices are uncorrelated,h50, we recover the
results of Ref.@37,41#.

III. TWO-DIMENSIONAL CASE

Two-dimensional turbulence has been the subject of m
studies because of its possible applications in meteoro
and oceanography, but also because it is the most acces
dimension for computational and theoretical approaches
the present context, the two-dimensional study of the effe
of vortex correlations on sound propagation is clearly s
pler because of the reduced number of degrees of free
involved. However, we hope that it can provide at least so
first answers qualitatively valid in any dimension, besides
fact that the structure of turbulence itself deeply chan
with the space dimensionality. In two dimensions the vort
ity vW points in the perpendicular direction, along thez axis.
at
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We consider a system composed of axisymmetric vortic
where each vortex produces an azimuthal velocity field~see
Ref. @41# for an example! around a vortex core of circulation
modulusG. Suppose that each vortex has a probabilityx1 to
have a circulation1G, and a probabilityx2 to have circula-
tion 2G(x11x251). The two-particle distributions are de
scribed by introducing three pair correlation functions,h11 ,
h22 , andh12 , where the sign of the subscript refers to t
respective signs of the vortex circulations. At this point, it
convenient to introduce distribution functions used in t
formalism of ionic liquids@42#. Let us consider the loca
vortex density, namely a ‘‘charge’’ density, defined as

rZ~rW !5(
i

zir i~rW !, ~3.1!

where the sum runs over the two species of number den
r i(rW) and chargezi ~here, the orientation61!. The vortex, or
charge, structure factorSZZ associated with the densit
rZ(rW), defined by

SZZ~qW !5
^rZ~qW !rZ~2qW !&

N
, ~3.2!

can be rewritten as

SZZ~qW !511n@x1
2 h11~qW !1x2

2 h22~qW !22x1x2h12~qW !#.

~3.3!

From Eq.~2.7!, we can deduce the expression for the ind
of refraction defined asN5c/c05Re(k0 /k), where c de-
notes the new phase velocity. Noting thatvW (xW ,2 ẑ)
52vW (xW ,ẑ), and assuming that the flow is isotropic, one g

dN512
n~g24!

8pc0
2 E

0

`

dqqv2~q!SZZ~q!

2
2n

c0
2

ReE dqW

~2p!2
uk̂0•vW ~ uqW 2kW0u!u2SZZ~ uqW 2kW0u!

3~ k̂0•qW !2G k0

(0)~q!. ~3.4!

As a consequence of the structure of Eq.~3.4!, the
asymptotic results obtained in Ref.@41# for the index of re-
fraction in the limits of short and long wavelengths, rema
valid here, provided that one replaces any quadratic factov2

by v2SZZ .
The total scattering cross section, in turn, is given by

sT* 5
nk0

3

2pc0
2E dV (2)uk̂0•vW ~ uk0q̂2kW0u!u2SZZ~ uk0q̂2kW0u!

3~ k̂0•q̂!2. ~3.5!

Using the propertyqW •vW (qW )50 for incompressible fluids~a
correct assumption for low Mach number base flows!, as
illustrated by the geometrical construction of Fig. 1, t
above expression can be rewritten
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sT* 5
nk0

3

2pc0
2E

2p

p

du
sin2u cos2u

2~12cosu!
v2~k0A222 cosu!

3SZZ~k0A222 cosu!. ~3.6!

With the same techniques presented in Ref.@41#, it is easy to
show thatsT* ;k0

2 whenk0→`. If SZZ(q) behaves asqb at
small q, one gets, from Eq.~3.6!,

sT* ;k0
51b , k0→0, ~3.7!

where we have used the propertyv(q→0);q for an axi-
symmetric bounded flow.

IV. DISCUSSION

Relations~3.4! and~3.5! show that the coherent propag
tion of an acoustic wave through a population of identi
vortices closely depends on their spatial structure. In t
dimensions, the index of refraction and the attenuation len
of the wave involve a circulation~or ‘‘charge,’’ by reference
to ionic liquids! structure factor. Hence, if the vortices have
simple shape and generate a flow fieldv with well known
characteristics, information on this distribution function c
be deduced from the study of the acoustic properties m
tioned above. Tractable analytical expressions have o
been obtained in two dimensions. However, we think t
they provide a qualitative understanding of the probe of v
tex correlations by ultrasound techniques, even in hig
space dimensions.

For its similarity with two-dimensional homogeneous tu
bulence@43#, let us consider further the case of a neut
flow, where x15x251/2. There are mainly two ways o
considering the vortex structure of decaying tw
dimensional turbulence, since there are two very differ
length scales in the problem. Depending on the scale of
terest, one can either picture the flow as composed of m
small, nearly pointlike vortices that may form large stru
tures, or consider the flow as formed by these few la
coherent vortices only. One can assume that the size o
former vortices is of order of a dissipation scale, while t
size of the latter is of order of the integral scale, at wh
energy is initially injected.

An ideal gas of vortices is characterized bySZZ(q)51;
however, Eq.~3.3! shows that it is equivalent, with respect

FIG. 1. Axisymmetric vortex in two dimensions.
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the dispersion relation, to identical ordering between ide
cal and opposite vortices (h111h2252h12). We logi-
cally check that a tendency to observe vortex pairs of id
tical circulation (h111h22.2h12) would result in an
increase of the kinetic energy of the flow, and hence
phase change. The limit ofSZZ(q) at small wave numbers is
related to that of the total scattering cross section thro
relation~3.7! if the flow produced by one vortex is bounde
in space.SZZ(0) indeed represents the local fluctuations
the number of charges, and is of particular interest. A lo
electroneutrality assumption@SZZ(0)50# means that the
‘‘charge’’ ~or circulation! of a given vortex is exactly can
celed by the total ‘‘charge’’ of the vortices that surround
at length scales of the order of a few vortex radii, the flu
has no net rotation.

Let us consider the flow at small scales, i.e., made
nearly pointlike vortices. Although not much studied in th
literature, vortex pair correlations have motivated theoreti
works. An exact analytical expression for the vorticity stru
ture factor has been derived for a class of two-dimensio
stationary solutions of the Navier-Stokes equation@44#. It is
characterized by a Debye-Hu¨ckel-like pair distribution,
SZZ(q)}q2/(q21ks

2). Turbulence at high Reynolds numbe
clearly exhibits quite distinct statistical properties: compu
simulations rather show that vortices with same circulat
sign have the tendency to organize in domains@19#. Such
systems, where electroneutrality is not locally observed,
theoretically better described by other approaches, like
microcanonical formulations of the statistics of tw
dimensional vortices in a bounded domain@14–18#. These
theories predict that the one-point probability distribution
vortices is spatially nonuniform. To obtain this result, ho
ever, two-point correlation functions are usually neglected
first order (SZZ51).

Two-dimensional homogeneous isotropic turbulence
be conveniently described in the inertial range
uniform mixture of long range correlated vortice
Notice that the two-dimensional energy spectrumE(q)
5q^uW (qW )•uW (2qW )&/(4pV), can be reexpressed with th
charge structure factor asE(q)5n/(4p)q v2(q)SZZ(q).
The interpretation of the classical two-dimensional turb
lence spectral lawsE(k);k2m (m53 @20,45,46#, m.4
@11,47#!, in terms of quasi-point-like vortices@v(q);q21#
leads toSZZ;q2(m21) . This is supposed to be the behavi
of SZZ in the inertial range. When the structure factor is ste
enough~say, if m is significantly larger than 1!, one expects
the vorticity correlations to be long range and positive: t
spatial structure differs qualitatively from that of the ide
gas given by a white spectrum. The common spectral la
are compatible with preferential ordering between same s
vortices.

At large scales, the flow is made of large coherent vorti
structures. The pair correlations between these vortices
closely related to the properties of the energy spectrum in
low wave number limit, outside of the inertial range. F
instance, if the spectrum in this limit is such thatE(q)
;qm8, with m8.0 @48#, the electroneutrality is local beyon
the size of the coherent vortices. In that case, one exp
that the structure of the vortex system should be similar
the short range structure in liquids.
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APPENDIX

For identical vortices and with the help of relation~2.5!,
the diagonal terms (a)5(b) of the sum

1

V
@ k̂0•uW ~qW !#@ k̂0•uW ~2qW !#

5
1

V (
a,b

^@ k̂0•vW (a)~qW !#@ k̂0•vW (b)~2qW !#& ~A1!

give the contribution

nE dâ@ k̂0•vW ~qW ,â!#@ k̂0•vW ~2qW ,â!#, ~A2!
ed

ys

I

J

n

,

id
.

where vW (qW ,â)5*dxWvW (xW ,â)exp(2iqW•xW). The off-diagonal
terms (a)Þ(b) take the form

N2

V

1

V2E dxWdxW8dxWadxWbdâdb̂g~xWa2xWb ,â,b̂!

3e2 iqW •(xWa2xWb)k̂0•vW ~xW ,â!e2 iqW •xW k̂0•vW ~xW8,b̂!eiqW •xW8

~A3!

and can be recast as

n2E dâdb̂@ k̂0•vW ~qW ,â!#@ k̂0•vW ~2qW ,b̂!#h~qW ,â,b̂!. ~A4!

Summing the terms~A2! and ~A4!, the relations~2.2! and
~2.4! are transformed to Eqs.~2.7! and ~2.8!.
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